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Abstract 

Background:  The prediction of protein secondary structures is a crucial and signifi-
cant step for ab initio tertiary structure prediction which delivers the information about 
proteins activity and functions. As the experimental methods are expensive and some-
times impossible, many SS predictors, mainly based on different machine learning 
methods have been proposed for many years. Currently, most of the top methods use 
evolutionary-based input features produced by PSSM and HHblits software, although 
quite recently the embeddings—the new description of protein sequences generated 
by language models (LM) have appeared that could be leveraged as input features. 
Apart from input features calculation, the top models usually need extensive computa-
tional resources for training and prediction and are barely possible to run on a regular 
PC. SS prediction as the imbalanced classification problem should not be judged by 
the commonly used Q3/Q8 metrics. Moreover, as the benchmark datasets are not 
random samples, the classical statistical null hypothesis testing based on the Neyman–
Pearson approach is not appropriate.

Results:  We present a lightweight deep network ProteinUnet2 for SS prediction which 
is based on U-Net convolutional architecture and evolutionary-based input features 
(from PSSM and HHblits) as well as SPOT-Contact features. Through an extensive evalu-
ation study, we report the performance of ProteinUnet2 in comparison with top SS 
prediction methods based on evolutionary information (SAINT and SPOT-1D). We also 
propose a new statistical methodology for prediction performance assessment based 
on the significance from Fisher–Pitman permutation tests accompanied by practical 
significance measured by Cohen’s effect size.

Conclusions:  Our results suggest that ProteinUnet2 architecture has much shorter 
training and inference times while maintaining results similar to SAINT and SPOT-1D 
predictors. Taking into account the relatively long times of calculating evolutionary-
based features (from PSSM in particular), it would be worth conducting the predictive 
ability tests on embeddings as input features in the future. We strongly believe that our 
proposed here statistical methodology for the evaluation of SS prediction results will 
be adopted and used (and even expanded) by the research community.

Keywords:  Protein secondary structure prediction, U-Net, Deep learning, PSSM, 
HHblits
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Background
The function of a protein is correlated with its  tertiary structure, also known as the 
native structure which  is a unique, stable, and kinetically accessible three-dimen-
sional structure [1]. The first tertiary structure was determined for myoglobin by John 
Kendrew and his associates in 1957 [2]. For the studies on the structure of globular 
proteins, Kendrew received the Nobel Prize in Chemistry in 1962. More than 60 years 
later, there are 177 426 protein structures deposited in the Protein Data Bank [3] as 
of May 9th, 2021. For comparison, UniProtKB/Swiss-Prot database, which contains 
manually annotated and reviewed protein sequence (primary structure) has 564 
638 sequences deposited and UniProtKB/TrEMBL, which contains automatically 
annotated and not reviewed sequences, has 214 406 399 sequences deposited as of 
May 9th, 2021 (The UniProt Consortium, 2021). The cost of determining sequence 
is significantly lower compared to the cost of determining the structures [4]. Hence, 
researchers try to create statistical or machine learning that would predict the struc-
ture of the proteins.

For the secondary structure prediction, three generations of methods and algo-
rithms are described in the literature [5]. The first generation, represented by Chou-
Fasman’s method, was leveraging statistical propensities of amino acids residues 
towards a specific secondary structure class [6]. The prediction accuracy of such 
methods was usually less than 60%.

The second generation of methods started in the 1980s and was leveraging sophis-
ticated statistical methods, machine learning techniques as well as information about 
the neighboring residues usually using a sliding window approach [5]. It was repre-
sented by methods like GOR [7] or Lim [8], but the Q3 accuracy was still less than 
65% [9].

The third generation of methods could be characterized especially by deep neural 
networks and additional features based on multiple sequence alignment profiles (i.e., 
PSSM—position-specific scoring matrices [10]) or HHblits (iterative protein sequence 
searching by profile hidden Markov models) [11]. The accuracy of those methods 
reached 80% Q3 for models such as PSIPRED [12]. Given the growing number of known 
protein sequences, and more effective neural network architectures, recent methods 
are able to predict the secondary structure with more than 70% accuracy on the 8-class 
problem like NetSurfP-2.0 (71.43% Q8 on CASP12) [13], SPOT-1D (73.67% Q8 on 
CASP12) [14] based on long short-term memory (LSTM) bi-directional recurrent neural 
networks (BRNN) or SAINT (74.17% Q8 on CASP12) [15] based on convolutions with 
the self-attention mechanism.

The next only recently emerging generation of methods, protein Language Models 
(LM), is inspired by advancements in the natural language processing (NLP) field [16]. 
The fundamental elements of these methods are sequence embeddings like the ones 
extracted from sequence-to-vector [17] or transformers [18–20] that are designed 
to encode some of the grammar of the language of life. One of these models, namely 
ProtT5-XL-U50 [19], helped to achieve the SS predictions close to NetSurfP-2.0 results 
(which is worse than SPOT-1D and SAINT). Importantly, the sequence embeddings can 
be generated in a fraction of the time with respect to evolution-based feature extraction 
methods like PSSMs or HHblits. The most recent success of AlphaFold2 [21] proved that 
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NLP-inspired mechanisms like attention and transformers may be extremely useful in 
protein structure prediction, but the main limitation is that the training of these models 
needs substantial computing resources.

In this study, we present ProteinUnet2, a significantly extended and improved version 
of ProteinUnet, our previous deep neural network architecture for SS3 and SS8 predic-
tion from a single sequence [22]. It is now possible to feed any number of features to 
the input of the network (here, we used evolutionary-based features). We performed 
the analysis of the significance of the input features resulting in the selection of their 
best combination. The architecture has been improved with the addition of attention 
and dropout layers and training with a variable learning rate. We designed it to be light-
weight by keeping a relatively low number of parameters and using easily paralleliza-
ble convolutional layers. This new architecture allowed us to keep the prediction times 
lower than for predictors SAINT and SPOT-1D while maintaining similar or better per-
formance on the benchmark datasets TEST2016, TEST2018, and CASP12. However, it 
should be remembered that the prediction time does not include the relatively long time 
of calculating the protein input features (i.e., PSSMs, HHblits, and SPOT-Contact).

For reference only, we included in Additional file  1 the comparison with the brand 
new AlphaFold2 (using secondary structures parsed from the predicted 3D structure) 
on the CASP14 dataset. For the same dataset, we also included a comparison with the 
ProtT5-XL-U50 language model. An in-depth comparison of our architecture with LMs 
(taking embeddings as input, not PSSMs or HHblits) will be the subject of a separate 
publication.

For the first time (to our knowledge), we raise the problem of the incorrect methodol-
ogy used for prediction efficiency assessment in the previously published works. The SS 
prediction is a heavily imbalanced classification problem and should not be judged using 
commonly used Q3/Q8 metrics. Instead, we proposed to use the Adjusted Geometric 
Mean (AGM) metric [23], which has been proven to be more appropriate for bioinfor-
matics imbalanced classification problems [24]. One cannot fail to mention the SOV 
(Segment Overlap Measure) metric (i.e., the average overlap between the observed and 
the predicted segments instead of the average per-residue accuracy) for the evaluation of 
SS prediction. The previous definitions of SOV scores (SOV’99) [25] and (SOV’94) [26] 
have recently been refined by improved assignment of allowance in SOV’99, which can 
ensure that the amount of allowance is incremental when one more element in the pre-
dicted sequence is further predicted accurately [27]. This relatively new metric requires 
a separate investigation of its sensitivity to imbalance classification and will be not con-
sidered here. Moreover, as the benchmark datasets are not random samples, the classi-
cal null hypothesis significance testing using the Neyman-Pearson inference approach 
should not be used. We propose the new assessment methodology based on the Fisher–
Pitman model of inference—statistical significance from the permutation tests. We 
also suggest supplementing such statistical significance with the practical significance 
measured by Cohen’s effect size. Using the proposed statistical methodology, we com-
pared ProteinUnet2 with state-of-the-art predictors (taking as input features PSSMs and 
HHblits), SAINT, and SPOT-1D.

Thus, we have made the following significant contributions: (i) introduced the new 
statistical methodology for SS prediction performance assessment, more appropriate in 
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highly imbalanced SS8 prediction problem, (ii) we proposed a new lightweight U-Net-
based deep architecture that enabled us to achieve very short prediction times while 
maintaining similar or better performance than other state-of-the-art SS predictors 
based on evolutionary-based input features.

Results and discussion
Like the authors of SAINT, we focused only on SS8 prediction analysis as it contains 
more useful information, does not depend on the SS3 mapping method, and is much 
more challenging to solve.

Comparison of predictors

We directly compare ProteinUnet2 against the most recent and accurate SS8 predictors 
SPOT-1D and SAINT. These state-of-the-art methods have been shown to outperform 
other popular predictors like MUFOLD-SS [28] or NetSurfP-2.0 [13]. For the reasons 
stated in the “Methods” section, in the comparison of performance, we focus mainly on 
the Adjusted Geometric Mean (AGM) metric for each structure (Table 1) as well as the 
macro-averaged AGM (Table  4) to assess the overall performance. The results for Q8 
(Table 2), F1 score (Table 3), precision (Additional file 1: Table S3), and recall (Additional 
file 1: Table S4) are also presented.

Figure 1 presents the boxplots of macro-averaged F1 and AGM as well as Q8 metrics 
at the sequence level on TEST2016, TEST2018, and CASP12 datasets for 3 predictors: 
ProteinUnet2, SPOT-1D, and SAINT. These boxplots reveal small differences between 
the predictors’ medians and means (denoted by red triangles) for all presented metrics. 
Also, very high variability in all distributions is clearly visible. To compare quantitatively 

Table 1  The comparison of AGM for each SS8 separately at the residue level on all test sets for 
ProteinUnet2 versus SPOT-1D (circle symbol) and SAINT (square symbol)

The green/red symbols on the left/right side of the ProteinUnet2 score denote the statistical significance that it has a better/
worse mean at the sequence level than other networks at p < 0.01. The dash means the metric was impossible to calculate. 
The best values for each dataset and structure are boldfaced

Table 2  The comparison of accuracy (Q8) for each SS8 separately at the residue level on all test 
sets for ProteinUnet2 versus SPOT-1D (circle symbol) and SAINT (square symbol)

The symbols and boldfaced results were added similarly as in Table 1
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the observed slight difference, we used the statistical methodology proposed in the 
“Methods” section.

Tables 1 and 4 report the performances obtained for AGM metric for 8 structures and 
the macro-average, respectively. Table  5 presents the obtained p-values together with 
Cohen’s effect sizes for two separate comparisons between classifiers: ProteinUnet2 
versus SPOT-1D, and ProteinUnet2 versus SAINT; on three test datasets: TEST2016, 
TEST2018, and CASP12.

The obtained macro-averaged AGM results in Tables 4 and 5 prove that ProteinUnet2 
has a statistically significantly higher mean than SAINT and SPOT-1D on TEST2016 
dataset (p < 0.01). Accompanying Cohen’s effect sizes are 0.083 (very small) and 0.227 
(small), respectively. ProteinUnet2 has also statistically significantly better macro-aver-
aged AGM than SPOT-1D on TEST2018 dataset (p < 0.01, very small effect 0.044) while 
on CASP12 dataset we observe a small effect (0.204) but no significance (p = 0.171), 
probably because of the small sample size. Regarding the differences in performances 
on single classes (Tables 1, 5), ProteinUnet2 is significantly better (p < 0.01) than SAINT 
and SPOT-1D on rare class B on TEST2016 and TEST2018 datasets (small effect sizes 
0.301, 0.297 and 0.260, 0.288, respectively). Small effect sizes are observed on this class 
for both classifiers on CASP12 dataset, but with no statistical significance (small sample 
size). ProteinUnet2 is also significantly better than SPOT-1D on classes H, G, and S on 
TEST2016 dataset. It is worth emphasizing that despite the lack of significance, Protein-
Unet2 obtains small effect sizes (0.220 and 0.261) on class H on a small CASP12 dataset 
when compared with other classifiers.

In summary, when the appropriate AGM metric is used for assessment of classifi-
ers’ performance on imbalanced SS8 prediction problem ProteinUnet2 is significantly 
better in overall performance (macro-averaged AGM) than SPOT-1D and SAINT on 
TEST2016 dataset, but with small or very small effect sizes. It is also significantly bet-
ter than SPOT-1D on TEST2018 dataset and achieves comparable results with SAINT 
on this dataset. The comparison of ProteinUnet2 on a relatively small CASP12 dataset 
leads to the conclusion that there is no significant difference between our predictor and 
SPOT-1D nor SAINT.

For the reasons stated in the “Methods” section, we do not discuss and compare clas-
sifiers using F1 score or Q8. However, for easier comparison with the previous literature, 
we report the values of these metrics and statistical significance in Tables 2, 3 and 4. The 
effect of applying AGM is especially pronounced in terms of conclusions from statistical 
analysis when compared to Q8.

Table 3  The comparison of F1 score for each SS8 separately at the residue level on all test sets for 
ProteinUnet2 versus SPOT-1D (circle symbol) and SAINT (square symbol)

The symbols and boldfaced results were added similarly as in Table 1
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Fig. 1  Boxplots of macro-averaged F1 (top row), macro-averaged AGM (middle row), and Q8 (bottom row) 
at the sequence level for TEST2016 (left column), TEST2018 (middle column), and CASP12 (right column). The 
red triangles denote mean scores. The exact values of means and standard deviations are given in Additional 
file 1: Table S5
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It is difficult not to relate the results of protein SS prediction to the more general prob-
lem of 3D protein structure prediction (from which SS can be calculated by parsing, for 
example using the DSSP program [29]), especially in the context of the undoubted suc-
cess of AlphaFold2 on CASP14 [21]. The comparison of AlphaFold2 on the test datasets 
used in this study would not be fair as they were most probably used during the training 
phase of AlphaFold2. However, in Additional file (Additional file 1: Tables S7 and S8), 
we have added a separate section about the comparison of predictors on the CASP14 
dataset. It includes also the results on one of the best protein language models ProtT5-
XL-U50 [19] for reference. CASP14 consists of proteins selected specially for the contest 
and therefore they may be not a representative sample. Thus, the detailed comparative 
analysis of ProteinUnet2 with AlphaFold2 and language models would require training 
and testing on other more representative databases and input features and will be the 
subject of a separate publication.

Dependence on the number of homologs

Figure 2 shows the dependence of the macro-averaged AGM on the number of effective 
homologous sequences (Neff) for the TEST2016 set. Each point on the plot is an average 
of at least 20 proteins with the given Neff (rounded down to the nearest integer) calcu-
lated by HHBlits. The figure shows that metrics increase with the increasing Neff. AGM 
for all networks is much lower for sequences with less than 4 homologs (Neff < 4).. The 
advantage of ProteinUnet2 over SPOT-1D is statistically significant (p < 0.01) for Neff 
values 1, 7, 8, 9, 11. Interestingly, this advantage is the most pronounced for Neff = 1 
(AGM greater by 0.035 than SPOT-1D and by 0.021 than SAINT). ProteinUnet2 is not 
statistically different from SAINT in this context.

Table 4  The comparison of macro-averaged AGM, Q8, and macro-averaged F1 at the residue 
level on all test sets for ProteinUnet2 versus SPOT-1D (circle symbol) and SAINT (square symbol)

The symbols and boldfaced results were added similarly as in Table 1

Table 5  p values from one-sided paired permutation tests and Cohen’s d effect sizes (after 
the backslash) for the difference in AGM between ProteinUnet2 and other networks using the 
alternative hypothesis that ProteinUnet2 has a greater mean

The dash means that there were not enough samples (< 20) to run tests. p values lower than 0.01 are boldfaced
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Analysis of incorrect predictions

We noticed that for particular sequences from TEST2016 (5doiE, 5dokA, 5d6hB) 
the performance of all networks is very poor (AGM < 0.3). It turned out that they are 
missing some amino acids in the original PDB files (5doiE—4 gaps with 35 out of 128 
AA missing, 5dokA—1 gap with 34 out of 204 AA missing, 5d6hB—8 gaps with 54 out 
of 152 AA missing). The gaps for 5d6hB chain are presented in Fig. 3 generated using 
the PDBsum web server [30] and on 3D visualization from RCSB Mol Viewer [29] in 

Fig. 2  Macro-averaged AGM for predicted SS8 as a function of the number of effective homologous 
sequences for the TEST2016 set. The circle over the point means that ProteinUnet2 has a statistically 
significantly larger mean than SPOT-1D for that Neff value (one-sided paired permutation test at p < 0.01)

Fig. 3  The primary and secondary structure of chain B in 5d6h protein from PDB

Fig. 4  3D visualization of chain B in 5d6h protein with missing amino acids marked
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Fig. 4. Even a single missing amino acid may change the secondary structure [31]. It 
may explain the very low performance for mentioned proteins. Thus, the problem lies 
in the dataset itself.

Worse results of AlphaFold2 on 4 proteins from CASP14 dataset (namely T1030, 
T1054, T1064, and T1099) could be explained based on FOD-M model [32]. The calcu-
lated parameters of the FOD-M model for these proteins allow us to conclude that the 
learning procedure used in AlphaFold2 does not take into account the so-called protein 
specificity [33], which is not only a function of the sequence but also of the folding envi-
ronment. This problem will be studied in our future separate paper.

Running time

Table  6 presents the inference time of ProteinUnet2, SPOT-1D, and SAINT. The times 
were measured on the PC with AMD Ryzen 9 3900X CPU with Nvidia RTX 3070 GPU. 
They do not include PSSM, HHBlits, or SPOT-Contact feature extraction times (around 
28 min, 33 s, and 42 s, correspondingly, for an example protein 5ugw of length 159 accord-
ing to [14]). We are focused only on improving the training and prediction times of the 
network itself, and we do not consider evolutionary information calculation as a part of the 
network. We simply compare the effectiveness of the ProteinUnet2 architecture with the 
state-of-the-art architectures on the same input features. The inference of ProteinUnet2 
is orders of magnitude faster than SPOT-1D (up to 50 times faster for TEST2016 dataset) 
and around 10% faster than SAINT. A single epoch of ProteinUnet2 training takes around 
2 min which gives an average of 30 min per model. The training times of SPOT-1D and 
SAINT were not reported but are expected to be proportionally longer.

Conclusions
ProteinUnet2 significantly extends and improves our previous ProteinUnet deep archi-
tecture [22]. It introduces multiple inputs with evolutionary profiles like PSSM, HHblits, 
and SPOT-Contact maps. However, many other possible input features (e.g., sequence 
embeddings) can be easily adopted into this architecture. The performance is increased 
by an additional mechanism of attention and dropouts. ProteinUnet2 achieves compa-
rable results to the state-of-the-art secondary prediction models—SPOT-1D based on 
LSTM-BRNN architecture and SAINT based on self-attention modules while generating 
predictions and training much faster than SPOT-1D and faster than SAINT. That makes 
it especially useful in low-end systems (low-cost GPUs or CPU-only predictions) and 
rapid experimentation on large datasets, assuming that the input features (like PSSM 
or HHblits) are already available or easy to calculate. In future work, the ProteinUnet2 

Table 6  Prediction times in seconds (without time for calculating PSSMs, HHblits, and SPOT-
Contact) for ProteinUnet2, SPOT-1D, and SAINT on all test sets

Dataset ProteinUnet2 SPOT-1D SAINT

TEST2016 229 11,796 252

TEST2018 88 3644 98

CASP12 59 486 64
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architecture with learned attention layers can be further explored to interpret the mech-
anism of protein folding, e.g. using methods described in [33]. As bio-embeddings from 
[34] can be generated in a fraction of the time with respect to evolutionary-based fea-
tures, we also plan to test our architecture with these input features in the near future.

The proposed methodology for assessment of the performance of secondary structure 
predictors based on an appropriate measure for imbalanced classification (AGM) together 
with permutation tests as well as analyzing significance of performance difference based 
on effect sizes may and should be further developed through, for example, other measures 
of effect size or its interpretations appropriately to the application domain.

Methods
Datasets

For a fair comparison, we use the same training, validation, and test datasets as SPOT-
1D and SAINT. The training set TR10029 contains 10 029 proteins, and the validation 
set VAL983 has 983 proteins. We benchmark our model on 3 test sets: TEST2016 with 
1213, TEST2018 with 250, and CASP-12 with 49 proteins. See [14, 15] for the details 
about these datasets. The PSSM, HHblits, and SPOT-Contact maps were provided to us 
by the authors of SPOT-1D (for TR10029, VAL983, TEST2016, TEST2018) and SAINT 
(for CASP12). The parameters used to calculate them can be found in the corresponding 
articles and in Additional file 1: Table S6.

Metric for secondary structure imbalance classification problem

Some protein secondary structures, e.g., alpha-helices, are much more frequent than 
others (Fig. 5). This leads to the class imbalance problem [35] which is rarely mentioned 
or addressed in the literature about SS prediction. Assessing the performance of SS clas-
sifiers plays a vital role in their construction process. The most commonly used met-
rics of SS prediction performance are overall accuracies Q3 and Q8 [5, 9, 36] that are 
not appropriate for imbalance problems [37, 38]. Using them may lead to the accuracy 
paradox where high accuracy is not necessarily an indicator of good classification per-
formance [38], e.g., a classifier that always predicts class H will have ten times better 
accuracy than a classifier that always predicts class G (see Fig. 5).
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Fig. 5  The frequencies of 8 secondary structures in TEST2016, TEST2018, CASP12, and CASP14 sets
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The existing popular measures proposed for imbalanced learning like the geometric 
mean or F-score can still result in suboptimal models [24]. For these reasons, we used 
the Adjusted Geometric Mean (AGM) well-suited for bioinformatics imbalance prob-
lems [23]. It has been shown both analytically and empirically to perform better than 
F-score. It has no parameters (like a beta in F-score). It is given by Eq. (1) where GM 
is the geometric mean (Eq. 2) and Nn is the proportion of negative samples.

AGM’s purpose is to increase the sensitivity while keeping the reduction of speci-
ficity to a minimum. Also, the higher the degree of imbalance, the higher reaction 
to changes in specificity. It returns values between 0 (the worst prediction) and 1 (a 
perfect prediction).

We calculate AGM for each structure separately. To assess the overall quality, we 
use macro-averaged F1 and AGM scores. That is, we take an average of overall scores 
for each structure. This way we do not favor more frequent classes.

Significance testing and effect size

Null hypothesis significance testing (nhst) is a commonly used statistical method for 
comparing classifier performances [38, 39] although the authors mention their cave-
ats. In the case where the test datasets are not random (like the benchmark datasets 
used in the evaluation of SS prediction), using classical nhst is problematic [38]. The 
population  model (which is the basis of nhst) is rife with assumptions that are sel-
dom satisfied in practice and are often inappropriate for the lower levels of measure-
ment, e.g., independence, random sampling from a parent population, an underlying 
Gaussian distribution for the  target variable in the population, and homogeneity of 
variance. The permutation model is free of any distributional assumptions, does not 
require random sampling, is  completely data-dependent, provides exact probability 
values, and is ideally suited for the analysis of small samples [40]. Random permuta-
tion tests based on the Fisher–Pitman model of inference [41] are thus an alternative 
that is strongly recommended in our case.

(1)AGM =

{

GM+Specificity∗Nn

1+Nn
, Sensitivity > 0

0, Sensitivity = 0

(2)GM =

√

Precision ∗ Sensitivity

(3)Specificity =
TN

TN + FP

(4)Sensitivity =
TP

TP + FN

(5)Precision =
TP

TP + FP
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In our experiments, we used a one-sided paired sample permutation test for differ-
ence in mean classifier performances (perm.paired.loc function from wPerm R pack-
age). The tests are performed at the sequence level. Tests for separate structures are 
performed only on the subsets of sequences for which it was possible to calculate a 
given metric (e.g., if the structure is present in the ground truth or prediction).

Here (to our knowledge, for the first time), we propose a new methodology to compare 
the significance of classifier performance differences. Significance testing as well as per-
mutation tests alone do not resolve the problem of inferential interpretation. Statistical 
significance shows only that an effect exists, practical significance—the effect size—shows 
that the effect is large enough to be meaningful in the real world. Statistical significance 
alone can be misleading because it’s influenced by the sample size. Increasing the sample 
size always makes it more likely to find a statistically significant effect, no matter how 
small the effect is in the real world. Effect sizes are independent of the sample size and are 
an essential component when evaluating the strength of a statistical claim. Some authors 
[42] proposed to use confidence intervals for estimation of effect size, but they require 
a random sample to enable inference. Cohen’s effect size d [43] that we propose to use 
in our study for a paired-samples can be calculated by dividing the mean difference by 
the standard deviation of the differences. Whether an effect size should be interpreted as 
negligible (d < 0.01), very small (d < 0.2), small (d < 0.5), medium (d < 0.8), or large (d < 1.2) 
depends on the context (application) and its operational definition [44]. Thus, we propose 
to report statistical significance (denoted by p-values) together with practical significance 
represented by effect sizes (here, Cohen’s effect size d for a paired-samples).

ProteinUnet2 architecture

U-Net architectures have proven to be extremely effective in image segmentation tasks [45, 
46]. The U-shaped architecture of ProteinUnet2 is based on the idea from our previous 
ProteinUnet for secondary structure prediction [22] (for which the results are presented 
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in Additional file 1: Table S1). The new architecture was adjusted to handle multiple inputs 
by using multiple contractive paths, one for each input (Fig. 6). After each down-block, 
the features of all inputs are concatenated together and passed to the up-block via a skip 
connection. There are two output layers with softmax activations connected to the last up-
block, separately for SS3 and SS8. In ProteinUnet2, we limited the maximum supported 
sequence length from 1024 to 704 to further improve training and inference times without 
losing accuracy. Anyway, SPOT-1D and SAINT were not trained with proteins longer than 
700, and there are no proteins longer than 704 in our datasets. The input features and the 
number of filters were selected experimentally as described in the next section.

To mitigate the problem of the increased number of inputs and parameters of the net-
work, in the final ProteinUnet2 architecture (Fig. 2), we modified the architecture to be 
similar to the Attention U-Net [47]. That is, we decreased the number of convolutions in 
each down-block from 3 to 2, added dropouts with 0.1 rate between convolutions in all 
blocks, and applied attention gates right before the concatenation operation. ProteinU-
net2 was implemented in the environment containing Python 3.8 with TensorFlow 2.4 
accelerated by CUDA 11.0 and cuDNN 8.0. The code for inference and trained mod-
els are available on the CodeOcean platform (https://​codeo​cean.​com/​capsu​le/​04254​26) 
ensuring high reproducibility of the results. The code for training the models is acces-
sible on demand from authors.

Feature representation and selection

ProteinUnet2 takes a sequence of feature vectors X = (x1, x2, x3, . . . , xN ) as input, where 
xi is the feature vector corresponding to the ith residue, and it returns two sequences of 
structure probabilities vectors Y =

(

y1, y2, y3, . . . , yN
)

 as output, where yi is the vector of 
3 or 8 probabilities of ith residue being in one of SS3 or SS8 states. The 8 states are speci-
fied by the secondary structure assignment program Define Secondary Structure of Pro-
teins (DSSP) [48]. There are three helix states: 310-helix (G), alpha-helix (H), and pi-helix 
(I); three strand states: beta-bridge (B) and beta-strand (E); and three coil types: high cur-
vature loop (S), beta-turn (T), and coil (C). These 8 classes are converted into the 3-class 
problem by grouping the states: G, H, and I into H; B and E into E; and S, T, and C into C.

Similar to SPOT-1D, our final model contains 20 features from PSSM [10], and 30 fea-
tures from HHM profiles [11]. The features were standardized to ensure a 0 mean and 
SD of 1 in the training data. Additionally, we use contact maps generated by SPOT-Con-
tact [49]. We use the same windowing scheme as described in SPOT-1D, but we do not 
standardize the contact maps as they are already in the acceptable range <0, 1>. The win-
dow size of 50 was selected experimentally based on the results from Additional file 1: 
Table S1 that shows F1 scores and accuracies on the largest TEST2016 set for a single 
ProteinUnet trained with different input features on TR10029 and validated on VAL983. 
Additional file 1: Table S1 suggests that SPOT-Contact features gave better results of SS8 
prediction than any other input alone. The worst results are reported for 7 physicochem-
ical properties [50]. Thus, we did not investigate them further in ProteinUnet2.

Additional file 1: Table S2 shows the F1 scores and accuracies on TEST2016 for our 
proposed ProteinUnet2 trained with different combinations of input features and a dif-
ferent number of filters in down-blocks. It reveals that SPOT-Contact features alone 
outperformed combined PSSM and HHblits. However, the combination of all these 3 

https://codeocean.com/capsule/0425426
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features (keeping the same number of filters) increased F1 scores for all SS8 structures 
when comparing to any other feature alone. Most of our results are better for the higher 
number of filters, but we did not test numbers higher than 64 to avoid overfitting and to 
keep the number of filters in all blocks the same as in the original ProteinUnet. Thus, we 
decided to investigate further only the combination PHSA 64 attention from Additional 
file 1: Table S2. The architecture for this combination is presented in Fig. 6.

Training procedures and ensembling

For the initial experiments presented in Additional file  1: Table  S1 and Additional 
file 1: Table S2 the single models were trained on the whole TR10029 dataset and vali-
dated on VAL983. In the final ensemble, dataset TR10029 was divided into 10 strati-
fied folds to ensure a similar ratio of each SS8 structure in each fold. There were nine 
factors of stratification: the sequence length—shorter/longer than mean sequence 
length, and one factor for each of 8 structures occurrence—fewer/more occurrences 
than a mean number of occurrences per chain. We trained 10 separate models, each 
time using different 9 folds as a training set and always using VAL983 as a valida-
tion set. The models were trained to optimize the categorical cross-entropy loss using 
Adam optimizer [51] with batch size 8 and an initial learning rate of 0.001. The learn-
ing rate was reduced by a factor of 0.1 when there was no improvement in the valida-
tion loss for 4 epochs. The training for each model was running until the validation 
loss was not improving for 7 epochs. Each time, the model with the lowest validation 
loss was taken. Finally, the ensemble was created from these 10 trained models by tak-
ing the average of their softmax outputs, forming the final ProteinUnet2 prediction.
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